If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2-4=9
We move all terms to the left:
w^2-4-(9)=0
We add all the numbers together, and all the variables
w^2-13=0
a = 1; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·1·(-13)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{13}}{2*1}=\frac{0-2\sqrt{13}}{2} =-\frac{2\sqrt{13}}{2} =-\sqrt{13} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{13}}{2*1}=\frac{0+2\sqrt{13}}{2} =\frac{2\sqrt{13}}{2} =\sqrt{13} $
| G(X)=-16x^2+120x | | -97=-4x+7(-3x+4) | | x+5/12=16 | | -3x-12+2x=2(x+6) | | 0.5x=-0.0625x^2+5.5x | | 5x-3=6+14(x) | | 1/2(9x-3)=5x-4 | | 5x-3=6+14(x0 | | 29/8=87/t | | 16.6+1.5r=12+2r | | F=(102x9/5)+32 | | -97=-4x+7(-3x=+4) | | -3x-12+2x=2(- | | -97=-4x+7(-3x=4) | | -6÷2y=72 | | 2y+4=-1 | | 7+x/13=9 | | 1+2y=y+4 | | -2t+6=14 | | 1/2(5x-6)=3 | | 60+5x=135=10x | | -(5x+4)-1=-4x-(x+5) | | 0.25x-2=-6+0.416 | | 5(g-4)=120 | | 78+x=85 | | 4x+2(-2x+3)=2x+8-x-(4+x) | | 61=2x-3(3x-4) | | (8.50+2.10+x)13=143.65 | | 6•(2-y)=-36 | | −2x+6=14 | | 3b+8=24 | | 4(x+1)=x+2 |